17 resultados para Disease Progression

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Nucleoside 5-Azacitidine (5-Aza) in high risk MDS patients (pts) at a dose of 75mg/mq/day subcutaneously for 7 days, every 28 days, induces high hematologic response rates (hematologic improvement (HI) 50-60%, complete remission (CR) 10-30%) and prolongation of survival (at 2 years 50,8%). Aim: The role of 5-Aza in low-risk MDS patients is not well defined but its use in the earlier phases of disease could be more effective and useful to control the expansion of MDS clone and disease progression. In our phase II, prospective, multicentric trial a low-dose schedule of 5-Aza (75 mg/mq daily for 5 consecutive days every 28 days) was given to low-risk MDS pts in order to evaluate its efficacy and tolerability and to identify biological markers to predict the response. Methods: From September 2008 to February 2010, 34 patients were enrolled into the study. Fifteen patients had refractory anemia (RA), 5 patients refractory anemia with ringed sideroblasts (RARS), 7 patients refractory cytopenia with multilineage dysplasia (RCMD) and 7 patients refractory anemia with excess blasts-1 (RAEB-1). All patients failed previously EPO therapy and were in chronic red blood cell (RBC) supportive care with a median transfusions requirement of 4 units/monthly. The response treatment criteria was according to IWG 2006. Results: At present time 31 out of 34 pts are evaluable: 12/31 pts (39%) completed the treatment plan (8 courses), 7/31 pts (22%) performed the first 4 courses, 8/31 (26%) made 1 to 3 courses and 4/31 (13%) died during the treatment period. Out of 12 pts who completed the 8 courses of therapy 10 (83%) obtained an HI, 2/12 (17%) maintained a stable disease. Out of 10 pts who obtained HI, 4 pts (40%) achieved a CR. Generally the drug was very well tolerated. The most commonly reported hematologic toxicities were neutropenia (55%) and thrombocytopenia (19%) but they were transitory and usually no delay of treatment was necessary. 2/4 pts died early after the 1th cycle for septic shock and gastrointestinal hemorrage respectively whereas 2/4 pts died in a condition of stable disease after the 4th cycle for pneumonia and respiratory distress. Samples for biologic studies have been collected from the pts before starting the therapy and at the end of 4th and 8th course. Preliminary data on the lipid signalling pathways suggested a direct correlation between PI-PLC-β1 gene expression and 5-Aza responsiveness. Conclusion: Interim analysis of our study based on the small number of cases who completed the treatment program, shows that 83% of pts obtain an HI and 40% obtain a CR. 4 patients died during the treatment and even if the causes were reported as no related to the therapy it has been considered that caution has to be reserved in given 5-Aza in these pts who are elderly and frail. Preliminary data of PI-PLC-β1 gene expression suggest that this and probably other biological markers could help us to know a priori who are the patients who have more chances to respond.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Lymphangioleiomyomatosis (LAM), a rare progressive disease, is characterized by the proliferation of abnormal smooth muscle cells (LAM cells) in the lung, which leads to cystic parenchymal destruction and progressive respiratory failure. Estrogen receptors are present in LAM cells. LAM affects almost exclusively women of childbearing age. These findings, along with reports of disease progression during pregnancy or treatment with exogenous estrogens, have led to the assumption that hormonal factors play an important role in the pathogenesis of LAM. So, various therapies aim at preventing estrogen receptors (ER) by lowering circulating estrogen levels, by trying to block ER activity, or by attempting to lower ER expression in LAM. Prior experience have yielded conflicting results. Objective: The goal of this study was to evaluate, retrospectively, the effect of estrogen suppression in 21 patients with LAM. Design: We evaluated hormonal assays, pulmonary function tests and gas-exchange at baseline and after 12, 24 and 36 months after initiating hormonal manipulation. Results: The mean yearly rates of decline in FEV1 and DLCO are lower than those observed in prior studies and just DLCO decline was statistically significant. We also found an improvement of mean value of FVC and PaO2. Conclusions: Estrogen suppression appears to prevent decline in lung function in LAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’enzima IDO interviene nella via di degradazione del triptofano, essenziale per la vita cellulare; l’iperespressione di IDO favorisce la creazione di un microambiente immunotollerante. Nelle LAM IDO è funzionalmente attivo nelle cellule blastiche e determina l’acquisizione di un fenotipo regolatorio da parte delle cellule T alloreattive; l’espressione della proteina aumenta in modo consensuale con l’evoluzione clinica della patologia. Scopo della Tesi è indagare l’esistenza di una correlazione tra l’iperespressione di IDO da parte delle cellule leucemiche, le caratteristiche di rischio alla diagnosi e l’outcome dei pazienti. Sono stati esaminati 45 pazienti adulti affetti da LAM afferiti all’Istituto di Ematologia di Bologna. I pazienti sono stati stratificati a seconda di: età di insorgenza della leucemia, secondarietà a Mielodisplasia o radio chemioterapia, iperleucocitosi, citogenetica, biologia molecolare (sono state valutate le alterazioni a carico dei geni FLT3 ed NPM). I pazienti sono stati analizzati per l’espressione del gene IDO mediante RT-PCR, seguita da Western Blot, allo scopo di stabilire la presenza di una proteina attiva; successivamente si è proceduto a verificare l’esistenza di una correlazione tra l’espressione di IDO e le caratteristiche di rischio alla diagnosi per identificare una relazione tra l’espressione del gene ed un subset di pazienti a prognosi favorevole o sfavorevole. Dei 45 pazienti adulti affetti da LAM il 28,9% è risultato negativo per l’espressione di IDO, mentre il rimanente 71,1% è risultato positivo ed è stato suddiviso in tre ulteriori categorie, in base ai livelli di espressione. I dati non sembrano al momento suggerire l’esistenza di una correlazione tra l’espressione di IDO e le caratteristiche di rischio alla diagnosi. Nel gruppo di pazienti ad elevata espressione di IDO si riscontra un rate di resistenza alla chemioterapia di induzione più elevato, con una quota di pazienti resistenti pari al 71,4%, contro il 23,1% nel gruppo di pazienti IDO-negativi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Antiviral therapy can prevent disease progression in patients with chronic hepatitis C . Transient Elastografy (TE; Fibroscan) is an accurate surrogate marker to liver fibrosis, by measuring liver stiffness (LS). LS decrease has been associated with sustained virologic response (SVR). Aim: to assess the changes of LS measurments in CHC patients during and one year after Interferon (IFN)-based antiviral therapy (IFN/ribavirin) or (telaprevir+IFN/ribavirin). Methods: consecutive 69 CHC patients (53.6% females, mean age 57.9 ± 11.4) who underwent antiviral therapy for at least 20 weeks were enrolled. LS was measured using FibroScan at baseline, after three months, at the end of treatment and one year after treatment discontinuation. Fibrosis was graded using METAVIR score. Results: twenty patients treated with triple therapy and 49 with IFN/ribavirin. Fifty patients had SVR and 19 were non-responders. SVR patients: F0-F1, F2 and F3 patients (39.1%, 7.2% and 17.4%; respectively) showed no significant LS decrease (P= 0.186, 0.068 and 0.075; respectively). Conversely, in F4 patients (36.2%) LS was significantly decreased (P=0.015) after one year of treatment completion. In all patients with no SVR, no significant decrease in LS was observed. Interestingly, all Patients with F4 fibrosis (even non-responders) showed an initial significant decrease in LS (P=0.024) at 3 months after the start of treatment. However, this decrease was not predictive of SVR; area under the ROC curve 0.369 (CI %: 0.145-0.592) P= 0.265. Conclusion: Our study showed that initial decrease in LSM, especially in patients with higher baseline fibrosis score is unlikely to predict an SVR. In addition no significant association was found between clinical or virological parameters and fibrosis improvement. Further studies are needed to delineate the most appropriate clinical scenarios for the LSM by Fibroscan in chronic hepatitis C and its role in monitoring the response to antiviral treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the biology of Multiple Myeloma (MM) is of primary importance in the struggle to achieve a cure for this yet incurable neoplasm. A better knowledge of the mechanism underlying the development of MM can guide us in the development of new treatment strategies. Studies both on solid and haematological tumours have shown that cancer comprises a collection of related but subtly different clones, a feature that has been termed “intra-clonal heterogeneity”. This intra-clonal heterogeneity is likely, from a “Darwinian” natural selection perspective, to be the essential substrate for cancer evolution, disease progression and relapse. In this context the critical mechanism for tumour progression is competition between individual clones (and cancer stem cells) for the same microenvironmental “niche”, combined with the process of adaptation and natural selection. The Darwinian behavioural characteristics of cancer stem cells are applicable to MM. The knowledge that intra-clonal heterogeneity is an important feature of tumours’ biology has changed our way to addressing cancer, now considered as a composite mixture of clones and not as a linear evolving disease. In this variable therapeutic landscape it is important for clinicians and researchers to consider the impact that evolutionary biology and intra-clonal heterogeneity have on the treatment of myeloma and the emergence of treatment resistance. It is clear that if we want to effectively cure myeloma it is of primarily importance to understand disease biology and evolution. Only by doing so will we be able to effectively use all of the new tools we have at our disposal to cure myeloma and to use treatment in the most effective way possible. The aim of the present research project was to investigate at different levels the presence of intra-clonal heterogeneity in MM patients, and to evaluate the impact of treatment on clonal evolution and on patients’ outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: cognitive impairment is one of the non motor features widely descripted in parkinsonian syndrome, it has been related to the motor characteristics of the parkinsonian syndrome, associated with neuropsychiatric dysfunction and the characteristic sleep and autonomic features. It has been shown to be highly prevalent at all disease stages and to contribute significantly to disability. Objectives: aim of this study is to evaluate longitudinally the cognitive and behavioral characteristics of patients with a parkinsonian syndrome at onset; to describe the cognitive and behavioral characteristics of each parkinsonian syndrome; to define in PD patients at onset the presence of MCI or Parkinson disease dementia; to correlate the cognitive and behavioral characteristics with the features of the parkinsonian syndrome and with the associated sleep and autonomic features. Results: we recruited 55 patients, 22 did not present cognitive impairment both at T0 and at T1. 18 patients presented a progression of cognitive impairment. Progressive cognitively impaired patients were older and presented the worst motor phenotype. Progression of cognitive impairment was not associated to sleep and autonomic features. Conclusion: the evaluation of cognitive impairment could not be useful as a predictor of a correct diagnosis but each non motor domain will help to clarify and characterize the motor syndrome. The diagnosis of parkinsonian disorders lies in building a clinical profile in conjunction with other clinical characteristics such as mode of presentation, disease progression, response to medications, sleep and autonomic features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxidative stress has been implicated in the pathogenesis of a number of diseases including neurodegenerative disorders, cancer, ischemia, etc. Alzheimer’s disease (AD) is histopathologically characterized by the presence of extracellular senile plaque (SP), predominantly consisting of fibrillar amyloid-peptide (Aβ), intracellular neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, and cell loss in the selected regions of the brain. However, the pathogenesis of AD remains largely unknown, but a number of hypothesis were proposed for AD mechanisms, which include: the amyloid cascade, excitotoxicity, oxidative stress and inflammation hypothesis, and all of them are based, to some extent on the role of A. Accumulated evidence indicates that the increased levels of ROS may act as important mediators of synaptic loss and eventually promote formation of neurofibrillary tangles and senile plaques. Therefore a vicious circle between ROS and Aaccumulation may accelerate progression of AD. For these reasons, growing attention has focused on oxidative mechanism of Atoxicity as well as the search for novel neuroprotective agents. A strategy to prevent the oxidative stress in neurons may be the use of chemopreventive agents as inducers of antioxidant and phase 2 enzymes. Sulforaphane (SF), derived from corresponding glucoraphanin, glucosinolate found in abundance in cruciferous vegetables, has recently gained attention as a potential neuroprotective compound inducer of antioxidant phase 2 enzymes. Consistent with this evidence, the study is aimed at identifying the SF ability to prevent and counteract the oxidative damage inducted by oligomers of Aβ (1-42) in terms of impairment in the intracellular redox state and cellular death in differentiated human neuroblastoma and microglia primary cultures. In addition we will evaluated the mechanism underlying the SF neuroprotection activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MTDL (multi-target-directed ligand) design strategy is used to develop single chemical entities that are able to simultaneously modulate multiple targets. The development of such compounds might disclose new avenues for the treatment of a variety of pathologies (e.g. cancer, AIDS, neurodegenerative diseases), for which an effective cure is urgently needed. This strategy has been successfully applied to Alzheimer’s disease (AD) due to its multifactorial nature, involving cholinergic dysfunction, amyloid aggregation, and oxidative stress. Despite many biological entities have been recognized as possible AD-relevant, only four achetylcholinesterase inhibitors (AChEIs) and one NMDA receptor antagonist are used in therapy. Unfortunately, such compounds are not disease-modifying agents behaving only as cognition enhancers. Therefore, MTDL strategy is emerging as a powerful drug design paradigm: pharmacophores of different drugs are combined in the same structure to afford hybrid molecules. In principle, each pharmacophore of these new drugs should retain the ability to interact with its specific site(s) on the target and, consequently, to produce specific pharmacological responses that, taken together, should slow or block the neurodegenerative process. To this end, the design and synthesis of several examples of MTDLs for combating neurodegenerative diseases have been published. This seems to be the more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling the multifactorial nature of AD, and hopefully stopping its progression. According to this emerging strategy, in this work thesis different classes of new molecular structures, based on the MTDL approach, have been developed. Moreover, curcumin and its constrained analogs have currently received remarkable interest as they have a unique conjugated structure which shows a pleiotropic profile that we considered a suitable framework in developing MTDLs. In fact, beside the well-known direct antioxidant activity, curcumin displays a wide range of biological properties including anti-inflammatory and anti-amyloidogenic activities and an indirect antioxidant action through activation of the cytoprotective enzyme heme oxygenase (HO-1). Thus, since many lines of evidence suggest that oxidative stess and mitochondria impairment have a cental role in age-related neurodegenerative diseases such as AD, we designed mitochondria-targeted antioxidants by connecting curcumin analogs to different polyamine chains that, with the aid of electrostatic force, might drive the selected antioxidant moiety into mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and according to the WHO it is estimated that 36 millions of people worldwide currently suffer from AD. Genetic and environmental factors interact in a complex interplay that might affect pathogenic mechanisms leading to age-related neurodegeneration. The hypothesis is that the presence of allelic polymorphisms in selected genes affecting individual brain susceptibility to infection by the herpes virus family during aging, may contribute to neuronal loss, inflammation and amyloid deposition. Herpes virus family show features relevant to AD, since they infect a large proportion of human population, develop a latent form persisting for several years, are difficult to eliminate by immune responses especially when latency has been established and are able to infect neurons. The association between AD and herpes viruses infection has been investigated. In particular the investigation focused on CMV, EBV and HHV-6 in DNA samples from peripheral blood of a large cohort of patients with clinical diagnosis of AD and age matched CTR, from a longitudinal population study, and DNA samples from brain tissue of patients with neuropathological diagnosis of definitive AD. An association between the presence of EBV and HHV-6 DNA from PBL positivity with the cognitive deterioration and progression to AD has been focused. Moreover, IgG plasma levels in CTR and AD to these viruses were tested. CMV and EBV IgG plasma levels were higher in elderly subjects that developed clinical AD at the end of the five year follow up. Our findings support the notion that persistent cycles of latency and reactivation of herpes viruses may contribute to impair systemic immune response and induce altered inflammatory process that in turn affect cognitive decline during aging.